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The motion of an autonomous Hamiltonian system with two degrees of freedom, close to a system with a cyclic coordinate, is 
considered. It is assumed that the generating system admits of a steady rotation, the corresponding equilibrium position of the 
reduced system being stable in the linear approximation. It is also assumed that there is an internal resonance in the system: the 
ratio of the natural frequency of small oscillations of the reduced system to the frequency of variation of the cyclic coordinate 
is close to an integer. Non-linear oscillations of the complete system in the neighbourhood of this steady rotation are investigated. 
Periodic motions are constructed and their bifurcation and stability are examined. Methods of KAM theory are used to study 
quasi-periodic motions of the system. As an example, the problem of the motion of a nearly dynamically symmetrical heavy rigid 
body along an absolutely smooth horizontal plane is investigated in the case of internal resonance. © 2002 Elsevier Science Ltd. 
All rights reserved. 

1. S T A T E M E N T  O F  T H E  P R O B L E M .  
T R A N S F O R M A T I O N  O F  T H E  H A M I L T O N I A N  

Consider the motion of an autonomous Hamiltonian system with two degrees of freedom. It will be 
assumed that the Hamiltonian of the system contains a small parameter ~ (0 < e "~ 1) and may be 
represented as 

H = Hf°)(Q2, P], P2) + eH")(QI, Q2, PI, P2 ;e) (1.1) 

where Qi and Pi (i = 1, 2) are the coordinates and momenta, respectively. 
The Hamiltonian (1.1) is assumed to be a 2~-periodic function of the coordinate Qi, but the latter 

occurs only in the perturbing part ~/_/(1). This coordinate is therefore cyclic for the system with the 
unperturbed Hamiltonian H(°). Suppose, moreover, that the unperturbed system admits of a steady 
rotation 

Q, = ~t  + QI 0, Pt = Pi 0, Q2 = P2 = 0 (D, Q0, p]0 _ const) (1.2) 

and that the equilibrium position Q2 = P2 = 0 of the reduced system is stable in the linear approximation. 
We shall assume that the ratio of the natural frequency to of small oscillations in the neighbourhood 

of the aforementioned equilibrium position to the frequency f2 of variation of the cyclic coordinate is 
close to an integer, so that there is an internal resonance in the system. 

Let us consider the motion of the system with the complete Hamiltonian (1.1) in the neighbourhood 
of the steady rotation (1.2) of the generating system. The aim of this paper is to solve the problem of 
the existence, number and stability of periodic motions of th e complete system with Hamiltonian (1.1), 
and also to investigate quasi-periodic motions of the system. 

Put 

'A QI =q, Q2=e)~q2, Pi =Pi °+E2AP, P2 =~ P2 

in (1.1). The Hamiltonian of the perturbed motion will have the form (omitting the additive constant) 
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l 2 2 i 
H = -~ to(q2 + P2 ) + ~ P  + e~ [h3 (q2, P2) + (It q2 + 12 P2) P] + 

+ • ~ [ h4 ( q2, P2 ) + ( m l q~ + rn2 q2 P2 + m3p2 ) p + np2 ] + 

+ I~Y3s(q) + E~[f~ (q)q2 + f2 (q)P2 ] + O(e) (1.3) 

where hk(q2 , P2) (k = 3, 4) are kth degree forms in q2 and P2, li (i = 1, 2), my (j = 1, 2, 3) and n are 
constant coefficients, and s(q), f l (q)  and f2(q) are 2n-periodic functions of the variable q. 

We shall make a number of canonical changes of variables which simplify the structure of the 
Hamiltonian (1.3). First, using a univalent canonical transformation 

q = t p +  .... q2 = q 2 +  .... P = l ,  p2 = p2 +. . .  

which is close to the identity, we transform the part of the Hamlltonian" not containing1/2 . • the coordinate 
q to normal form, up to terms of the fourth order inclusive in the variables III , q 2,p 2. Then, changing 
to "polar" coordinates q~2,12 by the formulae 

q~ = 2-~2 sintp2, p2 = 2-~2 costP2 

we write the transformed Hamiltonian as 

H = £'/J + ~!2 + e'~(c20/2 +c11112 + c0212) + 

+ e~s(tP) + e~ 2 ~ 2  [f[(9)  sin ~2 + f2"(~o)c°s~2] + O(~) (1.4) 

where c# are constants and the functionsf~(~o) andf~((p) are 2r~-periodic functions of qo. 
Using the unitary canonical change of variables 

~0 = {p, ~o 2 = q~2, I = f - e~s(tp) / f~, 12 =/~ 

we eliminate the term el/3s((p) in the Hamiltonian. 
Next, we simplify the terms containing the functions f](q0) and f~((p). Let o~/g2 = N (where N is an 

integer). We represent the Fourier series of the functions f~(q0) and f~((p) in the form 

f/" (q~) = a~ ) cos Nip + b~ ) sin Nip + ~. (a(n i) cos nip + b~ i) sin ntp), i = 1, 2 
n;tN 

A univalent canonical change of variables, 2~-periodic in q~ 

q,, q, 2 ,1" , t ~ --> ~,, ~' 2 , J , J 2 

will eliminate all terms with non-resonance harmonics in expression (1.4). There remain in the 
transformed Hamiltonian terms with resonance harmonics cos(~2 -Nt~) and sin(~2 -Nt~). Let us write 
this Hamiltonian as 

2 2 
H = ~ J  + o.x/2 + g~(c20 J2 + c I i J J2 + c02J 2 ) + g ~ x ~ 2  cos(tp2 - Nip - ~') + O(E) 

Now make the change of variables 

defined by 

y__arctgBs,  AN b ~ ' + a ~  ) a ~ ' - b g  2' 
A N = 2 ' BN= 2 

~ ,~2 ,J ,  J2 ~ q)*,tp*2,J*,J ~ 

tp--tp*, ~2={p~+Nlp*+y, J = J ' - N J ~ ,  J 2 = J ~  
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We then obtain 

* *2 ~3 * * t t=Dd*+((o-QN)J~+sY3(C~oJ*2+c~jJ*J~+co2J~ ) + e  x ~ c o s ~ o 2 + O ( e )  (1.5) 

C[o = C2o, c~| = cll - 2Nc2o, c~2 = Co2 - c t lN  + c20 N2 

We now put o)/g2 = N + E2/38 and rewrite the Hamiltonian (1.5) in the form 

H =Dr* +.~6r~* .*2 (&Q+cJtJ)J2 +X3]~'COSq)~ +C02d2 ,- t~20-, + , • • , , , 2 ] + O ( ~ )  

Assuming that c~2 # 0, we make one more change of variables 

¢p*,q~, J*, J~ ---> O,02,p, p2 

by the formulae 

~0" =O, ~0~ = 0 2 + 2 ( 1 - ( I ) ,  J* = x , p ,  J ;  = x ,  P2; o=signc~2, ×, = / c ~ 2 )  ~3 

The transformed Hamiltonian is 

n = n o + E ~6 {&p 2 + fi[(a8 + bp)p2 + p2 + ~ 2  cos 0 2 ]} + O(~) (1.6) 

'/, a=n/l , b=c;,/c;2 

where the term O(e) is 27t-periodic in O, 02. 

2. P E R I O D I C  M O T I O N S  OF T H E  S Y S T E M  

2.1. Isoenergetic reduction. Let us consider the motions of the system with Hamiltonian (1.6) at an 
isoenergetic level. It follows from the equality H = g2c = const that 

p ---- C -- n {I~f'c2 + [~[(a~ + bc)p 2 + p2 + ~ 2  cos 0 2 ] } + O(E) (2.1) 

The variation of the variables 0 2 and 132 is described by the Hamilton equations (Whittaker's 
equations); the Hamiltonian has the form 

K = H ' +  O(E j6) (2.2) 

H '  = -IxP2 + p2 + ~ 2  cos 02, Ix = - (a6  + bc) = const (2.3) 

where the independent variable is x = (e2/3~/K2)0. The term O(e 1/3) in (2.2) is periodic in • with period 
T -  ~ 2/3. 

Note that the resonance relation (o/g2 = N between the frequencies of the initial autonomous 
Hamiltonian system, which has two degrees of freedom, implies the existence in the reduced "non- 
autonomous" Hamiltonian system, which has one degree of  freedom, of a resonance in the forced 
oscillations. The function H '  is a model Hamiltonian of such a system [1]. 

Now, when resonance is present in forced oscillations of ordinary systems with one degree of freedom, 
the parameter Ix in the model Hamiltonian defines the frequency mismatch. In the reduced system under 
consideration here, however, the parameter Ix, besides the value of the resonance mismatch, also depends 
on the energy constant c of the system with two degrees of freedom. 

2.2. Motions o f  the model  system. The  motions of the system with the model Hamiltonian (2.3) have 
been investigated before (see [1] and the references cited therein). Here we shall only present 
information necessary for what follows. 
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(c) 

Fig. 1 

Figures l (a-c)  are phase portraits of the model system in the plane of the variables u = 2"f~2 cos 02, 
v = 2q~2 sin 02, for the respective cases ix < 3/2, Ix = 3/2, Ix > 3/2. When Ix < 3/2, the system has one stable 
equilibrium position (Fig. la) 

p~°) = I IX I ch-~+ IX 0 ( 2 0 ) (  27-  41~3 ~ 

but when IX > 3/2 it has three (Fig. lc) 

p ~ ' ) = _ i x c o s ~ +  ix, e l ' )=0 :  p [ 2 ) = _ i x c o s ( ~ ° + a x ] + i x  0(22) 
3 3 3 3 ~,3 3 ) ~ '  =0  

p 3)=_l.tcos( 21t  Ix 0 3) ( 4IX3-27  3  3+T)+7 ' -- .  eos = ) 

two of which, corresponding to the highest (0(23)) and lowest (0(21)) values of P2, are stable, while one, 
corresponding to the middle Value (0(22)), is unstable. 

When Ix = 3/2 (Fig. lb) we have two equilibrium positions: a stable one P2 = 1, 02 = n and an unstable 
one P2 = 1/4, 02 = 0. 

Let h denote the energy constant of the model system (H' = h = const). In the plane of the parameters 
Ix and h the aforementioned equilibrium positions are reached at points of the curves (Fig. 2) 

,,,.,(i) ~,.~(i) 2 p~2/) h=hi( l . t )=-~l . ,  2 1-1, 2 + cos0(2 i), i = 0 , 1 , 2 , 3  (2.4) 

For the energy level h = h2(Ix) there are also two asymptotic motions of the system (the separatrices 
in Fig. lc). 

Curves (2.4), together with the straight line ix = 3/2, divide the (ix, h) plane into subdomains in which 
the system has different types of motion. 

In the G1 and G2 domains (Fig. 2) the system performs oscillations near the stable equilibrium 
positions 192 = p(O), 02 = n (Fig. la) and 192 = p(3), 02 = 7~ (Fig. lc), respectively. In G 3, for every point 
(Ix, h) the system has two different motions: oscillation near the stable equilibrium position P2 = 9(21), 
02 = 0, and rotation, represented in Fig. lc  by the closed curve around the separatrix. To the energy 
level h = hi(Ix) there corresponds, besides the equilibrium position P2 = p~l), 02 = 0, a rotation-trajectory 
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_ h I 
~ G4 

a, I ~ . / 
l, "" - " ~  h = h,(~t) 

Fig. 2 

(not shown in Fig. lc). For each point of the domain G 4 there is one rotation of the system (the closed 
curves in Fig. l(c) surrounding the aforementioned rotation-trajectory). 

The oscillation and rotation frequencies of the model system depend on the roots of the polynomial 
(1)(92) = P2 - (P~ - l-tO2 - h) 2 [1]. In the domains G1, G2 and G 4 the polynomial (P(P2) has two positive 
real roots and a pair of complex-conjugate roots. Let al and a2 (al < a2) denote the real roots, and a3 
and a4 the complex ones. The motions of the system (oscillations or rotations) in the above domains 
are periodic, with frequency 

o~ t = rt ~ - r - ~  l(2K (kl )) (2.5) 

where 

½( m' = ~ ,  m"  = ~ ,  ai) = a i - a), k? = 1 2---re,m------g, .) 

and K(kl) is the complete elliptic integral of the first kind. 
In G2 the polynomial qo(p) has four positive real roots 132 = al (i = 1, 2, 3, 4), 0 < al < a2 < a3 < an. 

The oscillation and rotation frequencies corresponding to each point of G2 are the same, equalling 

(02 = n ~  / 8(K(k 2)), k 2 = ~/(a43a21)I(a42a31) (2.6) 

2.3. Periodic solutions o f  the system and their stability. According to Poincar6's theory of periodic motion 
[2], from each equilibrium position 02 = 02,, P2 = P2* of the model system (except for the unstable 
compound singular point P2 = 1/4, 02 = 0 at ~t 3 = /z) there issues a unique solution of the reduced system, 
analytic in el/3, T-periodic in x and therefore 2n-periodic in 0, of the form 

02 =02(0)=02, +O(e'A), P2 =152(0)=P2, +O(e 'A) (2.7) 

For these solutions, it follows from (2.1) that 

e~ {6c 2 + 13[-lap 2, +p~, + p-f~-2, cosO2,]} + O(e) (2.8) p = b ( e )  = c - - 6  

where the term O(e) is 2re-periodic in 0. 
Under  these conditions, the variation of 0 as a function of time is described by the equation dO/dt = 

OH/ap (where the Hamiltonian H is that defined in (1.6)), with expressions (2.7) and (2.8) substituted 
into the right-hand side. We have 

dOIdt  =t"20 +£F(0;E~),  ~0 = ~ + E ~ (  2 ~ 2  +[~bP2*) (2.9) 

where the function F(0; el/3) is 2rt-periodic in 0. 
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The solution of Eq. (2.9) may be expressed as 

0 = 0(t) = ~*t  + 00 + O(e), ~*  = ~ o  + O(~) = const (2.10) 

where the term O(e) is periodic in t with period 2n/f2*. 
Substituting expression (2.10) into equalities (2.7) and (2.8), we obtain a time-periodic solution 02(0(t)), 

152(0(t)), 15(0(0) of the system with two degrees of freedom, with period 

= 2--E 1 -  o(E) fZ* -~  "(2°w + ~bp2*) + (2.11) 

The number of such periodic solutions may be one or three, depending on the value of the parameter 
g of the model system. In the latter case, the periods of the solutions with respect to t are identical only 
in the principal part; terms of order e 2/3 and higher in (2.11) depend on the equilibrium value P2* and 
therefore differ for different solutions. 

Corresponding to the equilibrium position of the model system which is unstable for g > 3/2 there is 
an unstable periodic solution of the form (2.7), (2.8), since in that case the characteristic equation of 
the linearized system of equations of motion has a positive real root. Corresponding to the stable 
equilibrium positions of the model system are orbitally stable periodic solutions (2.7), (2.8) (with the 
possible exception of a set of parameter values of zero measure), which follows from the fact, to be 
proved in Section 3.2, that the approximate Hamiltonian (3.3) is non-degenerate and from the results 
of KAM theory [3]. 

In the initial variables, corresponding to the solutions (2.7), (2.8), which are 2n-periodic in 0, we have 
motions of the system with Hamiltonian (1.1) which are 2n-periodic in 01, namely 

Q 2 = e g ~ s i n z + O ( e ~ ) ,  P 2 = e ~ ~ c ° s x + O ( e ~ )  

/]1 = Pt ° +eNx*( c -  NP2*)+ O(E); X = NOt +02. + / r / 2 ( l - ~ ) + 7  (2.12) 

where 

0, = ~ t  + 00 + O(E Z),  ~ = ~ + O(E Z)  = const 

the term O(~ 1/3) being periodic in time with period T = 2n/~. This is also the period in t of the quantities 
Q2, P2 and P1 in equalities (2.12). 

Consequently, depending on the parameter ~t of the model system, the initial system admits of either 
one T-periodic motion of type (2.12) that is an orbitally stable motion, or three motions, two of which 
are orbitally stable and one unstable. 

In the case of three motions, their periods differ by quantities of the order of e 1/3. The functions Q2(t) 
and P2(t) for different motions have different amplitudes (depending on 92*); the phases of the motions 
corresponding to 92* = 9(21) and 92* = 9 (2) are identical in the principal part (-elT3), while the phase of 
the third motion (for P2* = p(3)) is shifted by r~ relative to the first two. The values of the momentum 
Pa for all three motions are identical in the principal part and differ in terms of the order of e 2/3. 

3. Q U A S I - P E R I O D I C  MOTIONS OF THE SYSTEM 

3.1. The existence of quasi-periodic motions. If the term O(e) is dropped from (1.6), we obtain an 
approximate Hamiltonian. The coordinate 0 in the approximate system is cyclic, and the corresponding 
momentum is constant: p -- c.  -- const. 

Let us write the approximate Hamiltonian as 

/'t = f~c, + e~(6.c, 2 + J3H') (3.1) 

where H'  is the model Hamiltonian defined in (2.3), in which g = -(aS + bc,). Note that in this 
expression for g the quantity c ,  may be replaced by the energy constant c of the complete system (as 
in (2.3)), since the two constants c and c,  differ by a quantity of the order of e z/3 (see (2.1)) and the 
Hamiltonian H' in (3.1) is contained in a term -e 2/3. 
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For the approximate Hamiltonian (3.1) we introduce action-angle variables/, W and 12, w2 in each 
of the domains of oscillations or rotations of the model system with Hamiltonian H'. We put 

I 
! = p = c . ,  / 2 = ~'Z_~ 02d02 = / 2 ( h ,  It) (3.2) 

when the integration is carried out along a closed trajectory of the model system corresponding to 
oscillation or rotation, and we use the energy integral H'  = h = const. 

If the function 12 = 12 (h, IX) is inverted, we obtain the Hamiltonian H'  expressed in terms of action- 
angle variables 

h = h( !  2, It) = h(12, IX(8, c,)) = h(! 2, It(8, l ) )  - h ( / ,  12 ) 

The approximate Hamiltonian/4 may therefore be expressed as 

/~(I,  12 ) = H(°)(I) + ~.~H°)(I, ! 2 ) (3.3) 

H{°)(I) =DJ, H(I)(I, 12) =~t12 +13h(I, 12) 

We shall also consider the system with the complete Hamiltonian written in terms of the variables 
I, w, I2, W 2. 

H =/4(1, 12 ) + EH (2)(1, 12, w, w2;£ ~ )  (3.4) 

The Hamiltonian (3.4) is analytic in all its arguments, except at the singular points and separatrices of 
the model system. 

The following conditions hold for the approximate Hamiltonian (3.30) 

0H(o) 0H  0) ^ 02H (I) 
. o  

Condition I may be verified directly; condition 2 follows from formulae (2.5) and (2.6). Condition 3 is 
equivalent to the non-degeneracy condition 02h/0I 2 ~- 0 for the model Hamiltonian. This will be verified 
in Section 3.2; it will be shown that the model Hamiltonian satisfies the non-degeneracy condition for 
all admissible values of the parameters IX and h, except for the set of points (~t, h) on the curve represented 
in Fig. 2 by the dashed curve. 

Based on the results of KAM-theory [3], for all initial conditions, the variables I and 12 in the complete 
system with Hamiltonian (3.4) always remain in the vicinity of their initial values. For most initial 

2/3 conditions, the motions of the complete system will be quasi-periodic with frequencies £2 = g2 + O(e ) 
2/3 and f22 = ~ f30h/OI2 + O(e), where dh/OI2 is the oscillation or rotation frequency of the model system, 

as defined by (2.5) or (2.6); the following estimates are then valid: 

I I(0-/(0)1~ o(E)5), I/2( t)-  1 2 ( 0 )  I ~ O(E ~) 

(except for values of IX and h outside a small neighbourhood of the dashed curve in Fig. 2). The addition 
to the aforementioned majority of initial conditions is of the order of e -d/~2~, where d = const > 0. 

3.2. Verification of the non-degeneracy condition for the model Hamiltonian. We shall now verify that 
the model Hamiltonian h(I2, IX) satisfies the non-degeneracy condition in the domains G1 . . . .  , G4 of 
the parameter plane (IX, h) (Fig. 2) described in Section 2.2. 

We first consider the rotation domains G 3 and G4, as well as the part of the oscillation domain G1 
to whose points the trajectories in Fig. la surrounding the origin correspond. 

Using the second relation of (3.2) and the energy integral of the model system, we write 

d2 h 03 3 02 H' I Op] = 033 
dl2="~n~ d02 ~'n~ 2 -  ~c°s02P2~ dO 2 

( 0 H ' / 0 p 2 )  3 ( - I t  + 2P2 + I/2cOS02P2~) 3 
(3.5) 

where (o = dh/dI2 is the frequency of the oscillation or rotation in question. 



364 O.V. Kholostova 

Since the angle 0 2 increases monotonically on the relevant trajectories, it follows that OH'/Op2 = 
dO2/dx > 0 and the denominator of the fraction in (3.5) is positive. As for the numerator, it is positive 
on trajectories for which P2 > 1/4 at all angles 02. Under those conditions d2h/dI 2 > 0, and the non- 
degeneracy condition holds. 

Among the trajectories corresponding to oscillations at Ix = 3/2 there is one passing through the point 
P2 = 1/4, 02 = 0. On this trajectory 1/4 ~ P2 ~ $1, where sl is the unique root of the equation 

P~ - ~ 2  - IxP2 = (9 - 4g)/16 

in the domain under consideration. On all trajectories surrounding this one we have Pa > 1/4, and the 
non-degeneracy condition holds. The points of the domain G1 corresponding to these trajectories are 
those above the straight line h = Ix/4 + 9/16, which is represented in Fig. 2 by a dash--dot line. 

Now let Ix/> 3/2. When Ix = 3/2 (Fig. lb) were have 1/4 < P2 <~ 9/4 on the separatrix, but when Ix > 3/2 
(Fig. lc) the following relation holds on the outer loop of the separatrix 

 ,i2, s2, =p;2, 

and moreover the estimate p~2) > IX/6 > 1/4 holds [1]. 
Thus, when IX/> 3/2, we have P2 > 1/4 on all rotation-trajectories of the model system, and therefore 

d2h/dI 2 > 0 and the non-degeneracy condition holds. 
We note, moreover, that the non-degeneracy condition is also satisfied in the oscillation domain in 

the neighbourhood of the stable equilibrium P2 = p~l), 02 = 0~1), to which the points of the already 
considered domain G 3 correspond: the oscillation and rotation frequencies 012 in G 3 are the same (see 
formula (2.6)), and since d2h/dI~ = d012/dI 2 = 012d012/dh the non-degeneracy condition reduces to the 
inequality d012/dh ~ O, which is ,the same for oscillations and rotations in the domain G 3. 

We will now verify the non-degeneracy condition for points of the domain G2 and the part of the 
domain G1 below the straight line h = -IX/4 + 9/16. 

For points of a small neighbourhood of the curve h = h2(ix) in G2, corresponding to oscillations near 
the separatrices, we set h = h2(ix ) - A (0 < A ~ 1), and it then follows from (2.5) that ol 2 = -a/ln A, 
a = const > 0. Hence if follows that 

do) I / d h  = -dto I / d A = - a / ( A l n  2 A)< 0 

and, consequently, the non-degeneracy condition holds in the neighbourhood of the separatrices of the 
oscillation domain G2. 

For points near the curves h = h0(ix) and h = h3(ix ) of the domains G1 and G2, corresponding to 
r (0) 0 (°) a (3~ (3) oscillations in the neighbourhood of the stable equil'b ia P2 = P2 , 02 = 2 nd 02 = P2 , 02 = 02 , 

we have 

h=hk(ix)+ Btl 2 +t1212 +O(/23), k = 0 , 3  

B, =(g-2p~k ' )  2 + 2 P ~ 2  k~, B 2 = [ ( i x - 2 p ~ k ' ) ' - ~ ( g - 2 p ~ * ' ) 2 - p ~ * ) ] / B ,  

(3.6) 

If B2 ;~ 0, the Hamiltonian (3.6) satisfies the non-degeneracy condition. This condition is violated if 

(ix_2p~2k))2 = - ~ ' + 1  pxf~2k~, k = 0 , 3  (3.7) 
4 

In the domain G2 we have B 2 < 0 for all tx = 3/2. In the domain G1, Eq. (3.7) is satisfied when 
Ix = Ix, = -0.188959 .... If ~t, < Ix < 3/2, then B E < 0; when Ix < Ix., we have B z > O. 

For points of the domains G1 and G 2 outside small neighbourhoods of the above-mentioned 
boundaries, the validity of non-degeneracy condition for the model Hamiltonian has been verified on 
a computer. The computations showed that d2h/dI~ < 0 for all points of G2 (as also for points of that 
domain near the curves h = hE(Ix), h = h3(ix ), as verified analytically above). At the same time, a curve 
exists in the domain G1 (shown in Fig. 2 by the dashed curve) on which the non-degeneracy condition 
fails to hold. This curve begins on the curve h = ho(g) at Ix = g , ,  passes through the origin, and 
ends at the point (3/2, 3/16) on the boundary line g = 3/2 (from which the boundary curves h = hi(ix) 
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j , 

c , i  : 

Fig. 3 

and h = h2(gj of the domains G2, G3 and G4 issue). For points of the domain G1 to the right of the 
curve, d2h/dI~< 0; for points to its left, d2h/dI~ > O. 

4. E X A M P L E :  A BODY W I T H  A S H A R P  P O I N T  ON 
A S M O O T H  S U R F A C E  

4.1. Formulation of the problem. Consider the motion of a heavy rigid body on a stationary, absolutely 
smooth, horizontal plane, assuming that there is a sharp point on its surface (that is, the radius of 
curvature of the surface vanishes there), moving along this plane. The sharp point is close to one of 
the principal central axes of inertia of the body. The body's moments of inertia relative to the other 
two principal central axes of inertia are assumed to be close to one another. 

Let Oxyz be a fixed system of coordinates whose origin lies on the supporting plane, with the Oz axis 
directed vertically upward. Let G~] ~ be a system of coordinates attached to the body, with its origin 
at the centre of mass G of the body and its axes directed along the principal central axes of inertia of 
the body. Let x, y, z denote the coordinates of the point G; the body's orientation will be given by the 
Euler angles ~, 0 and ~p. 

Suppose the sharp point M of the body is near the G~ axis (Fig. 3); let ~, rl and ~ denote the coordinates 
of M in the coordinates system of G~rI~ (~ and r I are assumed to be small) and I is the distance GM, 
then ~2 + r12 + ~2 = l 2. Then distance from the centre of mass to the suplSorting plane is 

GG I = f(0, tp) = -~  sin 0 sin tp - 1"1sin 0 costp - ~ cos 0 

The kinetic and potential energies of the body may be written as [4] 

T:lm(]¢2 + .~2)+/(A cos2 ~p+ Bsin 2 q~+mfo2~ 2 + l  (c +mf~)(p2 + 
2 

+ 2 [(A sin 2 q~ + B cos  2 q~)sin 2 0 + C cos 2 0]~/2 + mfof~O(p + 

+ (A - B) sin 0 sin q~ cos ¢1~ + C cos 0~I/, FI = mgf(0, q~) (4.1) 

where m is the mass of the body, and A, B and C its principal central moments of inertia (A = B). 
It follows from formulae (4.1) that the coordinatesx, y and ~ are cyclic. Consequently, the quantities 

~, ~ and the momentum Pv are constant, and the problem reduces to investigating a system with two 
degrees of freedom with generalized coordinates 0 and q~. We may assume without loss of generality 
that.,? = ~, --- 0. 

We change to canonical variables, introducing generalized momenta 

Pw =aTlas, Po =aTl~O, p~ =aTla~ 
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Using the factor mlq-~,  we make the momenta non-dimensional, also introducing dimensionless time 
x = g q ~  and governing parameters e, 13, % a and b by the formulae 

A - B  B C n=ab 

Using certain relations established in [4], one can derive the following expression for the Hamiltonian 
of the reduced system (retaining the previous notation for the momenta and treatingp~¢ as a parameter) 

H = H <°) + ~H <l) + O(e 2) (4.2) 

H,0) I [ p2 p2 (p,  COS0- p¥)2 ] ^ 
_- + = ,  , + c o s .  

2"[I] + sin2 0 "y 1 

p~ cos 0 - Pv - / 2 
H~.)=_~Icosto ,"  P . a 2 , _ s i n t  0 . + 

z L p + s m  u I]sin 0 J 
Pe +-El-I ( - a  costo + bsin to)[(13sin 2 9 + y cos 20)p~ - y  cosOPv ] [~ + sin 2 0 - 

P7 

I ' p~ 
- ~ (a sin to + b cos~ to) sin 20 ([3 + sin 2 0) 2 - (a sin to + b cos to) sin 0 

(4.3) 

The system corresponding to Hamiltonian (4.2) is close to a system with a cyclic coordinate, since the 
coordinate to occurs only in thd, perturbed part. 

4.2. The case e = O. Regular precession o f  the body. T h e  case e = 0 corresponds to the motion of a 
dynamically symmetrical body (A = B) with a sharp point on its axis of dynamical symmetry (~ = rl = 
0). For a system with approximate Hamiltonian (4.3) we have P~o = const. Let us assume further that 
the values of the constant quantitiesp~0 andpv are identical, settingp~0 = p~, = a. The Hamiltonian/_/(0) 
may be written in the form 

HtO) = 2I .  13+sin2 0 p2 ~._~_tg20]+cos0 (4.4) 

The system with Hamiltonian (4.4) has particular solutions (equilibrium positions) of the form 
4 2 P0 = 0, 0 = 00 = const, where 00 = 0 or 00 is a root of the equation cos (0/2) = a/(413). The first of 

these corresponds to motion in which the body is rotating about a vertically positioned axis of symmetry 
at a constant angular velocity (a "sleeping" top). This motion is stable with respect to the variables 0 
andp0, provided that a 2 > 413; this condition may be rewritten in the form 

C2r 2 > 4Bmgl (4.5) 

where r0 is the angular velocity of rotation of the body about the vertical. Inequality (4.5) is an analogue 
of the well-known Maiyevskii-Chetayev condition for the stability of a "sleeping" Lagrange top with a 
fixed point. 

The second of the above-mentioned equilibrium positions of the approximate system exists and is 
stable provided that a 2 < 413, that is, provided that the reverse inequality to (4.5) holds. Corresponding 
to this equilibrium position is the regular precession of the dynamically symmetrical body; the constant 
angular velocities of precession ~ '  and proper rotation tO' are given by the formulae 

¥ ,  = a to, = f~ = _.a _ a cos 00 
213eos2(00/2)' Y 21~eos2(00/2) (4.6) 

where the prime denotes differentiation with respect to x. 
In the case of regular precession, the centre of mass G of the body remains fixed, while the point M 

describes a circle of radius lsin00 in the plane of its motion (the dashed curve in Fig. 3). 
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Note that, since the angle 0 at which the axis of symmetry of the body is inclined to the vertical cannot 
exceed n/2, it follows that 1/4 < cos 4 (00/2) < 1, and therefore regular precession exists provided that 
15 < ct2 < 4[5. We may assume here that t~ > 0, since if tx is replaced by --~ a change only occurs in the 
sense of rotation of the body (the signs of the angular velocities in (4.6)), not in the magnitudes of these 
angular velocities. 

4.3. Transformation of the perturbed Hamiltonian. Let us take the solution 

P0 = 0, 0 = 00 = 2 arccos[~ 2/(413)] ¼, p~ = 

of the approximate system as the unperturbed solution and consider the motions of the complete system 
with Hamiltonian (4.2) in the neighbourhood of this motion. Setting 

e = 0 o + e ~ x 2 ,  Pe =ek~Y2, ~ = q ,  P~ = c t + e ~ P  

in (4.2) and making the substitution 

x2=a.q2, y2=p21a., a.=(to2l$.) -¼, ta02=4sin2(0o/2), ~.=[]+sin20o 

we reduce the part of the Hamiltonian that is quadratic in x 2 and Y2 to normal form. The transformed 
Hamiltonian is 

H = ~1 to(q 22 + p2) + ~P+£J~(a,q~ + a2q2p22 +a3q2P)+~.~(btq~ +b2q~p ~ + 

+ b3q 2 P + b4 p2 ) _ eY3 (a sin 00 sin q + b sin 00 cos q + ~ sin 200 sin 2 q) _ 

- e~[(fl sin q + f2 cos q)q2 + (f3 sin q + f4 cos q)P2 + dt sin 2 qq2 + d4 sin q cos qP21 + 0(£) 

where 

_ 0~0  0 ~ - ' ~ * * ,  

b I = 

b 3 -- 

f2 = a.b cos 00, 

~ o  sin 200 a, sin 0 o 
a I=a~tg(00/2),  a2= 21~ ' a3-- 

a'4(6 + ~°2)(2 + ~°)  b~ 13c°s20° - sin20°(3- 2 sin20°) 

96cos2(0o/2) ' = -  21]. 3 

a~(2+t0~) b4 I r l  ctg20o ] 
4~  ' = ' 2 L ~ + T ]  ' d l=° t a3 '  d2=°tt'~°2at' f l = a * a c ° s 0 °  

f3 =-bf., f4 =af., f .=a[l$sin200-YC°S0o(i-c°s00 )] 

We now use the Deprit-Hori method to reduce the part of the Hamiltonian not containing the 
coordinate q to normal form up to and including fourth-order terms, and then, by the canonical change 
of variables 

a, p, q2, P2 "-~ t~, J, q2, ~b2 

(as in Section 2), eliminate terms -e 1/3 containing the coordinate q. After transforming to "polar" 
coordinates tb2, J2 by the formulae 

and eliminating the term in the Hamiltonian with the non-resonance harmonic sin ~, we obtain (retaining 
the previous notation for the variables) 
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H = ~ +ogl 2 + E2/3(c20 J2 + CliJJ 2 + c02 J2 )+ E~3[~¢~ " c05(f~2 -¢~ - ~ ) +  

+ ×; cos(~2 + ~ - 8 ; )  + x ;  cos(62 - 26 - ~ ; )  + ~;  cos(62 + 2 6 -  ~;)] + o(e)  

8 ~ = a r c t g f 2 * ? 3 ,  /5~=_+~-sign×~. 
f4-----fl Z 

)3 = f3 + a3b sin 00, )4 = f4 - a3a sin 00, 
co co 

, ,I ,  = - T ( d 2  +d,)  

d~ = d  2 - a 3 s i n 2 0  o 
co 

(4.7) 

where,  as shown by calculations 

i 1 - 4sin2 ( 0 o / 2 )  cos2(Oo 12)(15 + 4 sin4(Oo / 2)) 
= ~ + , Cl  = 

c2° 27 81~sin2(Oo/2) J 2ot13~sin(O o / 2 )  

4 + 3 c t g 2 ( 0 o / 2 ) ~  s in2Oo+3c°sOo ~cos20o 

~o2 = 1613. 41~ 2, 41L 3 

4.4. Conditions for the existence of  resonances. Since o > 0, while g2 may take values of  any sign, it 
follows that when £2 > 0 the system admits of  resonances  co = f2 and co = 2~,  and when f2 < 0, 
resonances co = -f2 and co --- -2f2. The  resonance relations co = Nf2 (N = 1, 2, -1 ,  -1 )  occur  when 

20tl3af~-. cos 2 (0 o / 2) 

7 = 7 u (a,  13) = (2 / N)[] sin O 0 cos(0 o / 2) + a ~ .  cos O 0 
(4.8) 

The  quanti t ies ~/1 and Y2 in (4.8) are always positive for  ot > 0, so that  the resonances  co = 2 ~  and 
co = g2 hold at all points (c~, 13) of  the domain  [5 < ot 2 < 4[3 or, what  is the same, the domain 

< c~ < 2q-~ (Fig. 4) of  existence of  regular  precession. The  quanti t ies Y-1 and %2, however,  change 
sign on passing through the curves cx = ~x_l(I]) and c~ = c~_2(~) def ined implicitly in the ((x, 13) plane by 
the relations 

(2 / N) sin 0 o cos (O o / 2) = -or cos 0 o 4[$ + s i n  2 0o (cos 4 (0 o / 2) = o~ 2/(4~)) (4.9) 

The  curves c~ = ~ - 1 ( ~ )  and ~-2(15) are shown in Fig. 4 by the upper  and lower dashed curves, 
respectively. In subdomain 1 in Fig. 4 we have ~/-2 < 0, and in subdomains  1 and 2, '/-1 < 0. Hence  
the only resonances  occurring in subdomain 1 are co = ~2, co = 292, in subdomain 2 - the 
resonances co = ~ ,  o = _+2f~, while in subdomain 3 all four  resonances  co = +2f~, co = +f2 are possible 
(but these resonances per ta in  to different  bodies, since they cor respond to different  values of  the 
pa ramete r  "0. 

P 
Fig. 4 
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For a physical interpretation of the conditions for resonances to exist, we will describe these results 
in a slightly different way. Fix the parameter [3 = ~ and consider the functions ~, = Fu(ct) - 5'U(a, B) 
(N = 1, 2) for oq. ~ o~ ~< ct2. ( a .  = "~/-~, o{2. = 2~-~) and ' / =  FM(C~) - ~M(a, B) for %t < t~ < Ct2. 
(aM = aM(~), M = -1, -2). 

All four functions y = FN(O0 (N = -2, -1, 1, 2) have a unique common point (2X/-~, 2X/-~) on the 
right boundary of their domains of definition (the point where the graphs of the functions have vertical 
tangents). For all other values of ct in the domains of definition of these functions we have F_l(ct ) > 
r_2(c0 > r2(a)  > r l (a ) .  

The function , /=  Fa(a) has a minimum point for 0 < ~ < 2/7, and the function ~, = F2(a) has one for 
0 < B < 8; the abscissa of the minimum point is determined by the following implicit equation 

oc'(3(l+sin2(Oo/2))+ 3ecsin2(Ool2)sin2Oo = NsinOocos(Ool2)[3~, N = I , 2  

where N = 1 for y = Fl(a  ) and N = 2 for y = F2(o 0. For ~ ~ 2/7 and ~ ~> 8 the minimum point lies 
outside the domains of definition of the functions ~ = Fl(ct ) and y = F2(ct), respectively; when B varies 
in these intervals, these functions increase monotonically. At the left boundary of the domain of definition 
we have FN(oq,) = (2/N)~ 2~(~ +1) (N = 1, 2); the function y = Fl(a),  considered in the interval 
0 < B < 1/7 (~ ~ 1/7), satisfies the inequalities FI(~I .  ) > 1"1(0{2. ) (Fx(cq.) ~< Fl(~2.)) ,  while the function 
y = F2(c 0 in the interval 0 < ~ < 1 ([3 >t 1) satisfies the inequalities Fz(cq. ) > F2(ot2. ) (Fz(Otl.) 

Fz(Ct2.)). 
The functions 7 = F_l(ot ) and y = F_z(Ct ) decrease monotonically everywhere in their domains of 

definition. 
Figure 5 illustrates the data of the analysis of resonance cases for values of ~ in the interval (0, 1/7) 

(similar analyses may be carried out for other values of ~). The solid curves in Fig. 5 are graphs of the 
functions ~ = FN(O 0 (N = -2, -1, 1, 2). The numbers on the curves correspond to the subscript N. 

Fix the parameters [3 -- ~ and y = 9 defining the body. In order to determine at what angular velocities 
of precession and intrinsic rotation (characterized by the parameter c 0 resonances of the form 
to = Nf~ (N = -2, -1, 1 or 2) occur, we must find the number and abscissae of the points at which the 
straight line y = ~ intersects the graphs of the functions y = FN(a). One of these straight lines is shown 
in Fig. 5 by the dashed line; it intersects each of the graphs of the functions 5' = Fl(c~) and y = F2(~ ) 
at two points. For the selected values of ~ and ~, therefore, there are two resonances of type to = f~ 
and two resonances of type to = 2~2, corresponding to different values of the parameter ct (different 
angular velocities). For other values of ~ the number of resonance cases varies from zero to four. 

4.5. Periodic motions of the body. Now suppose the parameters ct, [3 and y are such that one of the 
relations to = N ~  (N = -2, -1, 1 or 2) holds. Then, following the algorithm described in Sections 1 and 
2, we obtain the following motions, 2re-periodic in % that are close to regular precession: the angle 0 
at which the G~ axis is inclined to the vertical is defined by the following relation (02. and 92* are the 
equilibrium values of the variables 0 2 and P2 of the model system) 
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where6 ~5~vor6 6N(N l o r 2 ) , × ,  - . . , 2 / 3  ×=×~vor× . . . .  ( × / C o 2 )  , and = ×N; the number c~2 is computed 
by the formula in (1.5), o = sign c~2. 

The angular velocities ~'(qo) and q0' (qo) of precession and proper rotation differ from their unperturbed 
constant values (4.6) by 2n-periodic corrections of order eJ/3 and higher. If e is sufficiently small, ~'(qo) 
is of constant sign (in particular, V' > 0 for (~ > 0); hence the point M of the body describes the curve 
shown in Fig. 3 in its plane of motion. The points of this curve deviate from a circle of radius lsin00 
(the trajectory of the point M in unperturbed motion) by a quantity of the order of e 1/3 and higher. 

The dependence of the angle q0 on the time x in these motions is given by 

q)(x) = ~x + qo 0 + O(e~), ~ = f2 + O(e ~) = const" 

in which the t e rm O(l~ 1/3) is periodic in z with period T = 2r~/D, The quantities 0, ~'  and qo' have the 
same periods as functions of x. 

Depending on the size of the resonance mismatch and the energy constant (both determined by the 
value of the parameter ~t of the model system), one or three such periodic motions of the body exist 
that are close to regular precession. 

In the case when one such motion exists (for ~t < 3/2), it is stable with respect to the variables 0, P0, 
P~0; if three motions exist (~t < 3/2), two of them, corresponding to the least and greatest amplitude of 
deviation from the unperturbed value of 00, are stable, while the third, corresponding to the middle 
amplitude, is unstable. 
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